Saturday, 23 February 2013

Time line of Indian Scientist and their contribution


Apastamba (600 BC - 540 BC)



Mathematics
Apastamba was the author of one of the most interesting Indian Sulbasutras from a mathematical point of view. The general linear equation was solved in the Apastamba's Sulbasutra. He also gives a remarkably accurate value for √2 upto to five decimal places. As well as the problem of squaring the circle, Apastamba considers the problem of dividing a segment into 7 equal parts.


ACHARYA SUSHRUTA (600 BC)

Medicine & Plastic Surgery
A  genius who has been glowingly recognized in the annals of medical science. Born to sage Vishwamitra, Acharya Sudhrut details the first ever surgery procedures in "Sushrut Samhita" a unique encyclopedia of surgery. He is venerated as the father of plastic surgery and the science of anaesthesia. Sushruta lays down the basic principles of plastic surgery by advocating a proper physiotherapy before the operation and describes various methods or different types of defects, viz., (1) release of the skin for covering small defects, (2) rotation of the flaps to make up for the partial loss and (3) pedicle flaps for covering complete loss of skin from an area.




ACHARYA KANADA (3000 BC - 1000 BC or 6th Century BC) 

Atomic Theory
Many believe that Kanada originated the concept of atom. Adherents of the school of philosophy founded by Kanada considered the atom to be indestructible, and hence eternal. They believed atoms to be minute objects invisible to the naked eye which come into being and vanish in an instant.







CHARYA CHARAK (3rd to 2nd century BC)

Medicine 
Acharya Charak has been crowned as the Father of Medicine. His renowned work, the "Charak Samhita", is considered as an encyclopedia of Ayurveda. His principles, diagoneses, and cures retain their potency and truth even after a couple of millennia. When the science of anatomy was confused with different theories in Europe, Acharya Charak revealed through his innate genius and enquiries the facts on human anatomy, embryology, pharmacology, blood circulation and diseases like diabetes, tuberculosis, heart disease, etc. In the "Charak Samhita" he has described the medicinal qualities and functions of 100,000 herbal plants.


ARYABHATA- I (476AD–550 AD ):

Mathematics and Astronomy
AryaBhatt was the first indian Mathematician and Astronomer. His famous treatise  was the "Aryabhatta-siddhanta" but more famously the "Aryabhatiya",  It is believe that he was born in Patliputra in Magadha, modern Patna in Bihar. He did the tremendous works in Mathematics and Astronomy. His works in Mathematics were Place value system and zero, Pi as irrational, Mensuration and trigonometry, indeterminate equations, Algebra.
His works in Astronomy were Motions of the solar system, Eclipses, Sidereal periods, Heliocentrism.



ARYABHATA II (920AD- 1000AD)

Astronomy and Mathematics
 He was the author of the Maha-Siddhanta. It consists of eighteen chapters and was written in the form of verse in Sanskrit. The initial twelve chapters deals with topics related to mathematical astronomy and cover the topics that Indian mathematicians of that period had already worked on. The various topics that have been included in these twelve chapters are: the longitudes of the planets, lunar and solar eclipses, the estimation of eclipses, the lunar crescent, the rising and setting of the planets, association of the planets with each other and with the stars. The next six chapters of the book includes topics such as geometry, geography and algebra, which were applied to calculate the longitudes of the planets.


BaudhAyana (800 BC-740BC)
MathematicsBaudhayana was an Indian mathematician, who was most likely also a priest. He is noted as the author of the earliest Sulba Sutra—appendices to the Vedas giving rules for the construction of altars—called the Baudhayana Sulbasutra, which contained several important mathematical results. He is older than other famous mathematician Apastambha.
He is accredited with calculating the value of pi (π) to some degree of precision, and with discovering what is now known as the Pythagorean Theorem.
                                             

 Brahmagupta (598AD – 668AD)

Mathematics and Astronomy
He wrote some important works on Mathematics and astronomy. Brahma sphutasiddhanta is the tremendes work written by him in the year 628 BC. Which contains some remarkable advanced ideas, including a good understanding of the mathematical role of zero, rules for manipulating both negative and positive numbers, a method of computing square root, methods of solving linear and some quadratic equations, and rules for summing series, Brahmagupta’s Identity and the Brahmaguota’s theorem? Brhmasphuta-siddhanta is one of the first mathematical books to provide concrete ideas on positive numbers, negative numbers, and zero.

 Bhaskara I (611 AD - 680 AD)

Astronomy and Mathematics
He is the first to write numbers in the Hindu-Arabic decimal system with a circle for the zero, and who gave a unique and remarkable rational approximation of the sine function in his commentary on Aryabhata's work. His works are the Mahabhaskariya, the Laghubhaskariya and the Aryabhatiyabhasya. Bhaskara's probably most important mathematical contribution concerns the representation of numbers in a positional

BHASKARACHARYA II (1114 AD - 1183 AD)

Astronomy and Mathematics
BHASKARACHARYA is also known as Bhaskara II is also a famous indian mathematician and astronomer. Bhaskara and his works represent a significant contribution to mathematical and astronomical knowledge in the 12th century. His main works were the Lilavati (dealing with arithmetic),Bijaganita (Algebra) and Siddhanta Shiromani (written in 1150) which consists of two parts: Goladhyaya (sphere) and Grahaganita 
Birbal Sahani (1891 - 1949)

He holds the credit of establishing the Paleobotanical Society that went on to set up the Institute of Palaeobotany on 10 September 1946. Professor Sahni was respected by all academicians and scholars of his time both in India and abroad. He was appointed the Fellow of the Royal Society of London (FRS) in the year 1936, which is the biggest British scientific honor. And for the first time since its inception, this award was given out to an Indian botanist.
He attended the Emmanuel College at Cambridge in the year 1914. And after this, he pursued further studies under Professor A.C. Seward and was given the D.Sc. degree from London University in the year 1919. Birbal Sahni then came back to his native country India to work as the professor of Botany at the highly esteemed Banaras Hindu University at the holy city of Varanasi. 

Halayudha (10th century ad)
Mathematics
Halayudha was a 10th century Indian mathematician who wrote the Mṛtasanjivani. Mṛtasanjivani is a commentary on Pingala's Chandah-shastra which containing a clear description of Pascal's triangle .

Homi Jehangir Bhabha (1909-1966)
 physics
Homi Bhabha was born on 1909 in Mumbai. Son of a barrister, he grew up in a privileged environment. In Mumbai he attended the Cathedral & John Connon School and then Elphinstone College, followed by the Royal Institute of Science.
In 1937, together with W. Heitler, a German physicist, Bhabha solved the riddle about cosmic rays. Cosmic rays are fast moving, extremely small particles coming from outer space. When these particles enter the earth’s atmosphere, they collide with the atoms of air and create a shower of electrons. Bhabha’s discovery of the presence of nuclear particles (which he called mesons) in these showers was used to validate Einstein’s theory of relativity making him world famous.

 JyeSThadeva (1500AD – 1610AD)
Mathematics
 Jyesthadeva was an astronomer-mathematician of the Kerala school of astronomy and mathematics founded by Sangamagrama Madhava . He is best known as the author f Yuktibhasa, a commentary in Malayalam of Tantrasamgraha by Nilakantha Somayaji . In Yuktibhasa, Jyesṭhadeva had given complete proofs and rationale of the statements in Tantrasamgraha. This was unusual for traditional Indian mathematicians of the time. An analysis of the mathematics content of Yuktibhasa has prompted some scholars to call it "the first textbook of calculus".

Katyayana (200BC)
Mathematics
He was the author of a Sulbasutra which is much later than the Sulbasutras of Baudhayana and Apastamba. It would also be fair to say that Katyayana's Sulbasutra is the least interesting from a mathematical point of view of the three best known Sulbasutras. It adds very little to that of Apastamba written several hundreds of years earlier. Katyayana was neither a mathematician in the sense that we would understand it today, nor a scribe who simply copied manuscripts like Ahmes. 

Manava (750BC - 690 BC)
 Mathematics
He was the author of one of the Sulbasutras: documents containing some of the earliest Indian mathematics. Manava's Sulbasutra, like all the Sulbasutras, contained approximate constructions of circles from rectangles, and squares from circles, which can be thought of as giving approximate values of π. There appear therefore different values of π throughout the Sulbasutra, essentially every construction involving circles leads to a different such approximation. Manava's work which give π = 25/8 = 3.125.

Melpathur Narayana Bhattathiri (1559AD–1664AD)
Astronomy and Mathematics
He is third student of Achyuta Pisharati, was of Madhava of Sangamagrama's  Kerala school of astronomy and mathematics. He was a mathematical linguist (vyakarana). His most important scholarly work, Prkriya-sarvawom, sets forth an axiomatic system elaborating on the classical system of Panini. However, he is most famous for his masterpiece, Narayaneeyam, a devotional composition in praise of Guruvayoorappan (Sri Krishna) that is still sung at the temple of Guruvayoor.

Meghnad Saha (1893-1956)
Physics
Meghnad Saha was born on 6 October 1893 in Sheoratali village near Dhaka in present day Bangladesh. By 1920, Meghnad Saha had established himself as one of the leading physicists of the time. His theory of high-temperature ionization of elements and its application to stellar atmospheres, as expressed by the Saha equation, is fundamental to modern astrophysics; subsequent  development of his ideas  has  led  to increased knowledge of  the pressure and temperature distributions of stellar atmospheres.



NAGARJUNA (931 AD) 
Chemistry and Metallurgy
He was an extraordinary wizard of science born in the nondescript village of Baluka in Madhya Pradesh. His dedicated research for twelve years produced maiden discoveries and inventions in the faculties of chemistry and metallurgy. Textual masterpieces like "Ras Ratnakar", "Rashrudaya" and "Rasendramangal" are his renowned contributions to the science of chemistry.  As the author of medical books like "Arogyamanjari" and "Yogasar", he also made significant contributions to the field of curative medicine.


Panini (520 BC - 460 BC)

Phonetics, Phonology, Morphology
Panini was a Sanskrit grammarian who gave a comprehensive and scientific theory of phonetics, phonology, and morphology. Panini was born in Shalatula, a town near to Attock on the Indus river in present day Pakistan.
A treatise called Astadhyayi (or Astaka ) is Panini's major work. It consists of eight chapters, each subdivided into quarter chapters. In this work Panini distinguishes between the language of sacred texts and the usual language of communication

Prafulla Chandra RAY (1861-1944)
 Chemistry
Prafulla Chandra was born on 2 August 1861 in Raruli-Katipara, a village in the District of Khulna (in present day Bangladesh). His publications on mercurous nitrite and its derivatives brought him recognition from all over the world.Equally important was his role as a teacher - he inspired a generation of young chemists in India thereby building up an Indian school of chemistry. Prafulla Chandra believed that the progress of India could be achieved only by industrialization. He set up the first chemical factory in India, with very minimal resources, working from his home. In 1901, this pioneering effort resulted in the formation of the Bengal Chemical and Pharmaceutical Works Ltd.


Sridhara (870AD – 930AD)
Mathematics 
Sridhara was an Indian mathematician known for two treatises: Trisatika (sometimes called the Patiganitasara) and the Patiganita. He wrote on practical applications of algebra and was one of the first to give a formula for solving quadratic equations.

Sir Jagadish Chandra Bose (1858-1937)
Science
Bose was  born on 30 November  1858, in Myemsingh, Faridpur, a part of the Dhaka District now in Bangladesh. He was an excellent teacher, extensively using scientific demonstrations in class. Bose also started doing original scientific work in the area of microwaves, carrying out experiments involving refraction, diffraction and polarization. He developed the use of galena crystals for making receivers, both for short wavelength radio waves and for white and ultraviolet light. Many of the microwave components familiar today - waveguides, horn antennas, polarizers, dielectric lenses and prisms, and even semiconductor detectors of electromagnetic radiation - were invented and used by Bose in the last decade of the nineteenth century. He also suggested the existence of electromagnetic radiation from the Sun, which was confirmed in 1944. Bose then turned his attention to response phenomena in plants. He showed that not only animal but vegetable tissues, produce similar electric response under different kinds of stimuli – mechanical, thermal, electrical and chemical.

Srinivasa Ramanujan (1887-1920)
 Mathematics
Ramanujan was born in Erode, a small village in Tamil Nadu on 22 December 1887.His research paper on Bernoulli numbers, in 1911, brought him recognition and he became well known in Chennai as a mathematical genius. Ramanujan made outstanding contributions to analytical number theory, elliptic functions, continued fractions, and infinite series. His published and unpublished works have kept some of the best mathematical brains in the
world busy to this day.

Sir C. V. Raman (1888-1970)
Mathematics
Chandrasekhara Venkata Raman was born at Tiruchirapalli in Tamil Nadu on 7 November 1888.He made enormous contributions to research in the areas of vibration, sound, musical instruments, ultrasonics, diffraction, photoelectricity, colloidal particles, X-ray diffraction, magnetron, dielectrics,etc. In particular, his work on the scattering of light during this period brought him world-wide recognition. He was knighted in 1929, and in 1930, became the first Asian scientist to be awarded the Nobel Prize for Physics for his discoveries relating to the scattering of light (the Raman Effect). After retirement, he established the Raman Research Institute at Bangalore, where he served as the Director. The Government of India conferred upon him its highest award,the Bharat Ratna in 1954.
  
Satyendra Nath Bose (1894-1974)
 mathematics
Satyendra Nath Bose was born on New Year’s day, 1894 in Goabagan in Kolkata.
He excelled in academics throughout his education – Intermediate, B.Sc. and M.Sc. with applied mathematics. His teacher at the Presidency College was Jagadish Chandra Bose - whose other
stellar pupil was Meghnad Saha.
He worked as a lecturer of physics in the Science College of the University of Calcutta (1916-21) and along with Meghnad Saha, introduced postgraduate courses in modern mathematics and physics. He derived with Saha, the Saha-Bose equation of state for a nonideal gas.

Shanti Swarup Bhatnagar (1894-1955)
 Chemistry
Bhatnagar was born on 21 February 1894 at Bhera, in the district of Shapur in Punjab (now in Pakistan). When he was barely eight months old, his father passed away. He spent his next thirteen years under the care of his maternal grandfather in Bulandshahar in Uttar Pradesh.
Shanti Swarup Bhatnagar played a significant part along with Homi Bhabha, Prasanta Chandra Mahalanobis, Vikram Sarabhai and others in building of post-independence Science & Technology infrastructure and in the formulation of India’s science policies.


Subramaniam Chandrasekhar (1910-1995)
 Astrophysics
Subramaniam Chandrasekhar, a nephew of Sir C.V. Raman, was born on 19 October 1910 in Lahore, (now in Pakistan). His first scientific paper, Compton Scattering and the New Statistics, was published in the Proceedings of the Royal Society in 1928. On the basis of this paper he was accepted as a research student by R.H. Fowler at the University of Cambridge. On the voyage to England, he developed the theory of white dwarf stars, showing that a star of mass greater than 1.45 times the
mass of the sun could not become a white dwarf. This limit is now known as the Chandrasekhar limit. 
He was awarded the Nobel prize for Physics in 1983 for his theoretical work on the physical processes of importance to the structure of stars and their evolution. Chandra was a popular teacher who guided over fifty students to their Ph.D.s including some who went on to win the Nobel prize themselves!! His research explored nearly all branches of theoretical astrophysics and he published ten books, each covering a different topic, including one on the relationship between art and science.

Varahamihira (505 AD- 587 AD)

Mathematics and Astronomy
Daivajna Varāhamihira is well known as Varaha, or Mihira was an Indian astronomer, mathematician, and astrologer who lived in Ujjain. He wrote two books called "Pancha-Siddhantika" and "Brihat-Samhita".
"Pancha-Siddhantika" gives us information about older Indian texts which are now lost. This work mainly deals with the mathematical astronomy and it summarises five earlier astronomical treatises, namely the Surya Siddhanta, Romaka Siddhanta, Paulisa Siddhanta, Vasishtha Siddhanta and Paitamaha Siddhantas.

VAGBHATA ( 7TH century ad)

Medicine 
Vagbhata completes the Great Three (Brhatrayi) of Ayurveda, with his predecessors, Caraka and Susruta. His identity and period are controversial but a major section of the scholarly community believes that he was a native of Sindh, who lived in the sixth century and write Astangahrdayam and Astangasngraha. The two texts frankly acknowledge the authority of Samhitas of Caraka and Susruta and closely follow in the footsteps of the earlier masters.The Legacy of Vagbhata is based on a study of Astangahrdayam and employs a thematic approach with the plentiful use of tables. As in the earlier volumes on Caraka and Susruta, great care has been taken in this volume on Vagbhata to maintain fidelity to the original text while ensuring easy readability for the students of Ayurveda, medicine and the sciences.

Vikram Sarabhai (1919-1971)

 PHYSICS
Vikram Sarabhai was born on 12 August 1919 at Ahmedabad. He had his early education in a private school, ‘Retreat’ run by his parents on Montessori lines. He established the Physical Research Laboratory in Ahmedabad in 1948, in a few rooms at the M.G. Science Institute with Professor K.K. Ramanathan as Director. In April 1954, PRL moved into a new building and Dr. Sarabhai made it the cradle of the Indian Space Programme. At the young age of 28, he was asked to organize and create the ATIRA, the Ahmedabad Textile Industry’s Research  association and was its Honorary Director during 1949-56.
Sarabhai pioneered India’s space age by expanding the Indian Space Research Organization. India’s first satellite Aryabhata launched in 1975, was one of the many projects planned by him. Like Bhabha, Sarabhai wanted the practical application of science to reach the common man. Thus he saw a golden opportunity to harness space science to the development of the country in the fields of communication, meteorology, remote sensing and education.

2 comments: